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NUMERICAL SIMULATION OF THE INFLUENCE OF SEA-SURFACE
TEMPERATURE ON TRANSLATING TROPICAL CYCLONES

I. INTRODUCTION

Unlike their counterparts in mid- and higher-latitudes where the contrast

of air masses provides enough energy for circulation, tropical cyclones de-

pend on the ocean for their energy source. Sensible and latent heat trans-

ported through the air-sea interface, in cooperation with the frictionally-

induced inflow, supplies the energy for maintaining the tropical cyclone

circulation. The air-sea interaction is an important physical process that

affects the behavior of tropical cyclones.

Observational studies on the interaction of tropical cyclones and the

ocean have indicated a strong dependence of tropical cyclones on the sea-

surface temperature (SST). The development, intensification, and movement of

tropical cyclones are in many instances linked with the warm SST (Palmen,

1948; Fisher, 1958; Miller, 1958; Perlroth, 1967; Brand, 1971; Gray, 1979).

Because the ocean is regarded as the heat reservoir, attention has also been

focussed on the importance of the thermal structure of the upper ocean. It

is found that warm and deep oceanic mixed layers are necessary conditions for

the development and intensification of tropical cyclones (Tisdale and Clapp,

1963; Perlroth, 1969). Contrary to the above findings, some tropical cyclones

are not affected by SST (Ramage, 1972; 1974).

Earlier numerical studies with axisymmetrical (therefore stationary) models

showed that tropical cyclones are very sensitive to small changes of SST (Oo-

yama, 1969; Rosenthal, 1971; Sundquist, 1972). Typically, a 50% change in

model maximum wind would result from a 20C change of SST. By incorporating

a better parameterization of the atmospheric boundary layer (ABL), Anthes and

Chang (1978) showed that an axisymmetric tropical cyclone is not as sensitive

as earlier studies indicated. The enhanced (decreased)evaporation associated

Mmusw t sbmlAd May 2, 1980.
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with warm (cool) SST is partially compensated for by the increased (decreased)

surface friction, therefore, the tropical cyclone has a 12h delay in response

to SST changes. When their tropical cyclone was coupled with the ocean, the

response was even weaker and further delayed (Chang and Anthes, 1979). How-

ever, the long term behavior of their model cyclone still agreed with pre-

vious axisymmetric model studies, i.e., warmer SST results in intensification

and cooler SST results in weakening.

The motion of a tropical cyclone with mean flow over an ocean of uniform

SST has been studied by Kuo (1969) and Jones (1977a) using linear models. The

air-sea interactions in these two linear models were purely mechanical with

only surface friction. These studies indicated that the trajectory of the

vortex center is a damped trochoid. The deflection angle of the mean path

(the angle between the mean current and the mean vortex motion) is a function

of the surface friction and the environmental friction. For tropical cyclones,

where the surface friction is greater than the environmental friction, the

deflection is usually to the right of the mean flow. These results were later

substantiated by Jones' (1977) three-dimensional, non-linear model with uni-

form SST.

The behavior of tropical cyclone in a three-dimensional model with mean

flow over non-uniform SST has not been studied. With variations in SST,

both the intensity and movement of tropical cyclones may be more complex.

The surface friction will change because of variatiomin surface stability

associated with the non-uniform SST, the sensible and latent heat exchanges

may be in certain ways dictated by the SST distributions. These variations

may significantly affect the behavior of tropical cyclones.
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The purpose of this study is to investigate the influence of var-

ious non-uniform SST distributions on the intensities and movements of trop-

ical cyclones that are imbedded in a mean flow. As described in the next

section, the model domain is large enough to allow free movement of the trop-

ical cyclone for about 3-4 days. The parameterization of the ABL has been

improved so that the air-sea interaction is adequately treated. In Section

III, the life history of a weak tropical cyclone translating over ocean with

uniform SST will be discussed and used as the control experiment for later

comparison. In Section IV, we first examine the responses of tropical cy-

clones when translating into regions of warmer and cooler SST. In Section

V, the response of the translating tropical cyclone with SST gradients perpen-

dicular to the mean flow will be discussed. Finally, the repsonse of the

translating tropical cyclone encountering strips of warmer or cooler SST will

be discussed in Section VI.

II. THE NUMERICAL MODEL

The tropical cyclone model used is identical to the one described in(1)
Madala and Chang (1979). The governing equations include the primitive equa-

tions of conservation for horizontal momentum, mass, enthalpy, and water vapor.

The system of equations is hydrostatic. A normalized pressure (a) is the verti-

cal coordinate (Phillips, 1957). The physics includes the subgrid scale hori-

zontal mixing, the subgrid scale cumulus convection, the grid scale precipita-

tion, and the subgrid scale vertical mixing due to surface friction.

The subgrid scale horizontal mixing is parameterized by a kinematic eddy

coefficient. This coefficient consists of a constant part and a part linearly

3-



dependent on wind speed. This form of the eddy coefficient yields suitable

mixing in the initial as well as the mature stages (Anthes et al. 1971).

The subgrid scale cumulus convection is parameterized following Kuo's

(1974) and Anthes's (1977) methods. Conditional instability and the boundary

layer convergence of water vapor are prerequisites for the cumulus convection.

The partitioning of heating and moistening depends on the vertically averaged

relative humidity of the air column. The vertical distribution of heating is

determined by the amount of conditional instability and the prescribed weight-

ing functions (see Anthes and Chang, 1979). The use of the weighting functions

insures a proper vertical heating distribution for the growth of tropical cy-

clone scale disturbances. The grid scale precipitation occurs when the air

reaches saturation in grid scale lifting.

The boundary layer effects are parameterized based on a generalized sim-

ilarity theory in which the logarithmic-linear profiles of the momentum,temp-

erature,and water vapor are "match" into the mixed layer (Chang and Madala,
(2)

1980). Anthes and Chang (1979) have shown a higher resolution BL is superior

to a single layer bulk ABL in an axisymmetric tropical cyclone model. To

incorporate into a 3D tropical cyclone model a higher resolution ABL is econo-

mically prohibitive. In addition, the results of Anthes and Chang (1979) indi-

cate that, except for the period of rapidly changing stability, the ABL in

tropical cyclones is dominated by mechanical mixing. Therefore, matching

technique seems to be appropriate. Universal functions A, B, C, and D are

formulated following Yamada (1976). The surface roughness height over open

water are calculated by Chanock's equation (Delsol et al, 1970).
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The model atmosphere from P = Ps (surface) to P = 0 is divided into

seven sigma layers (Figure 1). Note that the lowest layer has a thickness

of about 700 m, which is the typical ABL depth in tropical cyclones (Moss

and Merceret, 1976; Anthes and Chang, 1979). A better vertical resolution

between a = 0.1 and a = 0.3 is used to resolve the tropopause and outflow

structure. All prognostic variables such as u, v, T, and q, are defined

at the center of each layer, all diagnostic variables such as & and w are

defined at the boundary of each layer. The momentum points and mass points

are fully staggered in horizontal direction following Arakawa scheme C.

The spatial differencing is second order to conserve mass, momentum, and

enthalpy.

The tropical atmosphere of the hurricane season (Sheets, 1971) is used

for the initial mean thermodynamic state of the model. The thermal structure

features a conditionally unstable lapse rate from surface to about 350 mb and

high relative humidity (RH) up to 500 mb.

The initial flow field includes a uniform easterly current of about

4.5 m s l and a non-divergent, idealized vortex with maximum wind of 16 m s-1.

The initial surface pressure and temperature field are in gradient balance

with the flow field. The Coriolis parameter is 5 x lO s-l. One effect

of latitudinal variation of Coriolis parameter is to produce a northward

movement of the vortex (Madala and Piacsek, 1975; Anthes and Hoke, 1975).

For the purpose of isolating the movement of tropical cyclones caused by

SST, the Coriolis parameter is set constant in this study.
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III. THE CONTROL EXPERIMENT

A tropical cyclone with rather weak intensity develops from the initial

vortex imbedded in the uniform easterly mean flow of approximately 4.5 m s

over an ocean of 28.5 C. The model tropical cyclone reaches a quasi-steady

state after 48 h, attaining a minimum pressure of 996 mb 1 and maximum ABL

wind speed in the lowest layer of the model of 32 m s-1 (this experiment

is referred to as the control experiment (Exp. A, see Table 1)).

Figure 2 shows the ABL flow pattern and the surface pressure field

at 84 h when the model integration was terminated. The strong circulation

is confined to the region near the storm center. Maximum winds are located

to the right of the storm track where the cyclonic circulation and the mean

current is in the same direction. The winds at the center are very weak.

The flow far from the storm circulation is nearly undisturbed by the storm.

These characteristics of the low-level flow are also implied by the surface

pressure field. The circular isobars and the stronger pressure gradient are

concentrated to the region near the storm center.

Contrary to the concentrated cyclonic circulation at low level, the

asymmetric flow at the outflow level (a z 0.1 - 0.2) is predominantly anti-

cyclonic with a small region of cyclonic circulation near the center. The

speed of the anticyclonic circulation increases away from the center in

conservation of the angular momentum. It reaches a maximum of more than

20 m s- to the southeast* of the storm center.

Because the Coriolis parameter is constant, the orientation of the domain
has no real geophysical meaning.
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As shown by the paths of the storm center, the storm moves downstream

with the mean current and with a deflection to the right of the MAFV. At

84 h, the net northward displacement of the storm center is about 100 km.

The 50 deflection angle of our model is very typical for model tropical

cyclones (Jones, 1977a). However, the small scale looping motion in the

trochoid (Jones, 1977b) cannot be resolved by the 60 km grid resolution

of the present model.

Figure 3 shows the stress field at 84 h of Exp. A. Comparing with

the surface wind field, the region of the strongest stress is located to

the right of the storm track. The crescent shape of the maximum stress

region is responsible for the often observed crescent-shaped maximum cooling

in the ocean (Black, 1972). To the south of the strong stress, there is a

region where the stress is very small, corresponding to the weak surface

wind at the storm center.

The evaporation rate at 84 h of Exp. A shows that the strongest

evaporation occurs outside and to the north of the region of the maximum

wind (Fig. 4) where the ABL winds are considerable and the humidity is

undersaturated. The maximum evaporation rate is approximately 2.5 cm day- l.

The sensible heating is relatively insignificant, in agreement with earlier

findings of Rosenthal (1971) and Anthes and Chang (1978).

A series of experiments with various non-uniform SST distributions

were performed. The schematical patterns of SST tested are shown in

Figures 5 and listed in Table 1.

IV. TROPICAL CYCLONES TRANSLATING INTO BROAD REGIONS OF WARM AND COOL SST

As mentioned before, the intensity of axisymmetric, stationary model

tropical cyclones Is sensitive to sudden changes of SST. The situation that
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we consider here is a tropical cyclone that translates into regions of

warmer or cooler SST. The response of the tropical cyclone in this more

realistic situation is investigated with Exp. W., where the SST is 2 C

warmer at 30.5 C in the western half of the domain, and Exp. C, where the

SST is 2 C cooler at 26.5 C in the western half of the domain. SST in the

eastern half of the domain stays at 28.5 C.

Figure 6 shows the time series of the minimum pressures of Exps. W and

C and the control (Exp. A). In both Exps. W and C, the minimum pressures

deviate very little from the control experiment until the center of the

storm moves into the region of warmer or cooler SST. The delay is also

evident in the maximum surface wind (Figure 7). This delayed response,

similar to the behavior of the axisymmetric model of Anthes and Chang (1978),

is due to the increased (decreased) dissipation of kinetic energy which par-

tially compensates for the enhanced (weakened) evaporation over the warm

(cool) SST.

The SST patterns tested here also affect the path of the tropical cyclone.

At 84 h, the storm centers in Exps. W and C are displaced to about 60-100 km

to the right and left, respectively, relative to the control experiment (Fig-

ure 8). The fact that the increased surface friction produces a stronger de-

flection to the right of the MAFV agrees qualitatively with the linear theories

of Kuo's (1969) and Jones' (1977a). But in contrast to the linear theory, the

variation in the surface friction may be due to both storm intensity and the

surface stability. As it becomes clearer in the experiments discussed in the

next section, the asymmetries associated with a translating tropical cycline

and air-sea thermal exchange can also contribute to the deflection. Most of

the air-sea exchanges of sensible and latent heats occur in the right half of
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the tropical cyclone relative to the MAFV, and have important thermal

effects on the paths of tropical cyclones other than the mechanical effects

considered previously. As shown in Figure 9, stronger evaporation mainly

occurs over the region of warmer SST at 27 h of Exp. W. The maximum evapora-

tion rate increases from about 2 cm day- at 24 h to more than 6 cm day-
1

at 36 h in Exp. W when the center of the storm moves into the region of

warmer SST. Such a strong and asymmetric evaporation distribution causes a

stronger convection and heating to the right of the MAFV and shifts the

storm center toward the north.

V. TROPICAL CYCLONE TRANSLATING PERPENDICULAR TO SST GRADIENT

To further differentiate ocean's thermal effect on the path of tropi-

cal cyclones, we now consider the case that the mean flow is perpendicular

to SST gradient. In Exp. WR, the SST is 30.5 C to the right and 26.5 C to

the left of the MAFV, and in between the 30.5 C and 26.5 C waters, there

is a 600-km wide region where the SST increases continuously toward the

right having a gradient of 4 C/600 km. In Exp. WL, the SST pattern is

reversed so that the warm and cool ocean waters are located to the left and

right of the MAFV, respectively, and the SST gradient is toward the left

in the central region.

These SST patterns have very noticeable influence on both the inten-

sity and the path of the model tropical cyclone. As illustrated in Figs.

10 and 11, the storm intensity of Exp. WR increases greatly to a central

pressure of 982 mb and maximum wind of 50 m s-1 at 84 h; whereas the

storm intensity in Exp. WL remains essentially unchanged. The storm centers

10



in both Exps. WR and WL are displaced perpendicular to the MAFV from the

control experiment by more than 200 km toward the regions of warmer SST

(Fig. 12). At 84 h, the center of circulation in Exp. WR has almost

entered the region of 30.5C water. The apparent tendency of the model

tropical cyclone to move toward the warm SST is caused by the enhanced

latent heating associated with the SST distributions.

As illustrated by the evaporation rate at 27 h (Figures 13 and 14),

the evaporation in Exp. WR occurs mainly over the warm water to the right

of the MAF while the evaporation in Exp. WL occurs mainly to the left

of the MAFV. Both the rate of evaporation and the area of strong evapo-

ration in Exp. WR is much larger than in Exp. WL. Due to the asymmetry

associated with the translating tropical cyclone, the surface wind and

the surface stress are stronger to the right of the MAFV (see Figure 2

and 3). In Exp. WR the region of stronger stress coincides with the

region of warmer SST, whereas in Exp. WL, the region of stronger stress

does not coincide with the region of warmer SST. Consequently, the maxi-

mum evaporation rate increases to 6-7 cm d-1 in Exp. WR, it remains at

about 2 cm d l in Exp. WL. The stronger evaporation in Exp. WR causes the

intensification.

Increased evaporation and enhanced surface friction also cause a

local increase in the total energy convergence over the region of the

warmer SST. The temperature of the air column above the region of the

warmer SST will then increase through cumulus heating and the surface

11



pressure will ultimately fall. A gradual shift of the low pressure

center toward the warmer SST, through geostrophic adjustment, results

in a displacement of the vortex. This gradual shift makes the storm

centers in both experiments move toward the warm SST perpendicular to

the MAFV.

Note also that the rightward deflection from the control path in

Exp. WR is larger than that in Exp. W, and the leftward deflection from

the control path in Exp. WL is larger than that in Exp. C, where the

storm intensity is weaker than Exp. WL. This behavior cannot be explained

by the linear theories where the hurricane-ocean interaction is merely

mechanical. The SST distribution causes a redistribution of the latent

heating, and through geostrophic adjustment, shifts the circulation center

toward the warm water.

Several investigators have used the total thermal potential as a

measure of the energy available for the development of incipient tropical

cyclones ( Perlroth, 1969; Leipper and Volgenan, 1972). As

illustrated by Exps. WR and WL, the storm intensities and paths are very

different in spite of the fact that the total oceanic thermal potentials

in two cases are identical. This confirms the finding in Chang (1979)

that the air-sea energy exchange in the tropical cyclone and ocean system

depends very much on the details of the relative location, size, and

magnitude in SST variations.

12
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VI. TROPICAL CYCLONE TRANSLATING INTO STRIPS OF WARM OR COOL SST

We now examine the response of the tropical cyclone when it passes

over strips of warmer or cooler SSTs. As depicted in Figure 5, the SST

patterns include (1) a 300-km-wide 2C warm strip parallel to the MAFV

(Exp. WS), (2) a 300-km-wide 2C cold tongue parallel to the MAFV (Exp.

CS), and (3) a 300-km-wide 2C warm strip at 450 angle to the right of

the MAFV.

The response of the model tropical cyclone to the warm or cold strip

is not noticeable until after 36 h when the center of the storm moves in-

to the warm or cold tongue. At 84 h, the minimum pressures of Exps. WS

and CS are respectively 980 and 1000 mb, and the maximum surface winds are

respectively 50 and 25 m s l (Figures 15 and 16).

Contrary to the finding that tropical cyclones tend to steer away

from a pool of cold ocean water, the paths of the storm centers in Exps.

WS and CS are essentially unchanged as compared to the control Exp. A

despite the difference in storm intensity (Figure 13). It is probably

due to the fact that the changes in surface friction are restricted to the

relatively small regions of warm or cold strips.

The model tropical cyclone has very little response to the warm strip

which lies at 450 angle to the MAFV (Exp. WS45). Previous experiments with

axisymmetric hurricane model (Anthes and Chang, 1978; Chang and Anthes,

1979) showed that a tropical cyclone does not respond to warm SST if the
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tropical cyclone overlays the region of warmer SST for less than 12 h.

The storm in Exp. WS45 travels through the region of warmer SST in less

than 15 h, which is apparently not long enough for the tropical cyclone

to have significant response before it leaves the warm strip.

The variation in SST affects the air-sea exchange of sensible and

latent heat. As shown by Figure 14, the strong evaporation at 30 h of

Exp. WS occurs mainly in the region of the warm SST. The strongest evap-

oration occurs near the leading (northern) edge of the warm tongue. The

evaporation in Exp. CS is much weaker over the cold tongue except for a

slight increase where the air flow re-enters the region of 28.5C water.

Changes in the evaporation near the storm center, over a period of time,

results in changes in the intensities of the tropical cyclone. There are

many other fine details in the momentum field of the tropical cyclone in-

duced by the warm and cold strips. For example, before the center of the

tropical cyclone and the major portion of the strong cyclonic circulation

enter the region of change SST, the low-level flow reacts to the warm strip

in a fashion similar to that of a heat island. Upward motion is induced in

the ABL due to temperature gradient within the edge of the warm ocean.

These changes in the momentum field are persistent, but localized, and do

not seem to affect the overall behavior of the tropical cyclone.

VII. SUMMARY

The influence of various SST distributions on the intensities and

paths of translating tropical cyclones has been investigated using a three

dimensional model of tropical cyclones with improved parameterization of the

ABL and Kuo's (1974) cumulus parameterization.
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Various distribution of the SST are tested and found to have consider-

able influence on the intensity and path of the model tropical cyclone (see

Table 1). The variations in the SST not only changes the total surface

friction, which controls the deflection of the vortex from the mean ambient

flow, but also alters the sensible and latent heat exchanges. The magnitude

and the spatial distribution of the heat exchanges affect the intensity as

well as the movement of the tropical cyclone. Major results are summarized

as follows:

1. There is a deflection of approximately five degrees to the right

of MAFV as a slowly varying tropical cyclone translates on an f-plane with

mean flow over an ocean of uniform SST.

2. The intensity and the angle of deflection increases with increased

SST due to enhanced evaporation and friction.

3. When translating downwind the mean flow over the ocean with SST

gradients perpendicular to the MAFV, tropical cyclones tend to move into the

region of warmer SST. The movement toward warm SST is gradual and con-

tinouous.

4. Tropical cyclones are more likely to intensify when warmer ocean

situates to the right (left) of the storm track than to the left (right)

in the Northern (Southern) Hemisphere because of the asymmetries associated

with translating tropical cyclones.
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5. Narrow (as compared to the storm size) regions of warmer or

cooler SST have little influence on the paths of tropical cyclones. How-

ever, if the central portion of the tropical cyclone overlays the narrow

region of warm (cooler) SST over a period of time (> 12 h), the tropical

cyclone intensifies (weakens).

From these results, we conclude that the SST distribution affects the

behavior of a translating tropical cyclone, both frictionally and thermally.

In agreement with the adiabatic linear theories, the translating tropical

cyclone appears to deflect more to the right of the mean flow when friction

is increased (either due to increased surface instability or stronger in-

tensity). The SST distribution also redistributes the available latent

energy. This causes a shift in heating and pressure tendency, and ulti-

mately a shift of the vortex by geostrophic adjustment, toward the warm

ocean.

In light of these results, an increased effort to obtain and utilize

accurate SST data in operational forecast of tropical cyclones deserves

more serious consideration.
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